Chemical Reactions

- we already know chemical reactions involve electrons

 when elements form compounds, changes occur in the arrangement of electrons

 -atoms want to have a complete valence shell (like the noble gases)

 -they achieve this by sharing or transferring electrons
- Why are noble gases stable?

Which is easier?

What would the atom look like after losing that electron?

The atom now has a charge and is called an ion.

We write the charge as a superscript to the right of the symbol.

We change their name to end in "-ide'

Atom	Ion
Fluorine	0
Bromine	0
Oxygen	0

Bohr Diagram Questions

- 1. What part of the atom is involved in making chemical bonds?
- 2. For the metallic elements sodium, magnesium, and aluminum, answer the following
- questions.

 a) Draw a Bohr diagram for each element. How many electrons are in their outer orbits?

 b) Do these metallic elements tend to gain or lose electrons? Give reasons for your answer.

 c) What is the charge on each of the metal ions? (Include the ion symbol.)

- 3. For the nonmetallic elements nitrogen, oxygen, and fluorine, answer the following
- a) Draw a Bohr diagram for each element. How many electrons are in their outer orbits? b) Do these nonmetallic elements tend to gain or lose electrons? Give reasons for your
- answer.c) What is the charge on each of the nonmetal ions? (Include the ion symbol.)
- 4. Predict the names and charges of the ions that cesium, barium, and bromine might form.
- Beryllium and fluorine react to form an ionic compound.
 Which element is the metal and which is the nonmetal?
 Draw Bohr diagrams of beryllium and fluorine.

- c) How many electrons must each element gain or lose to form stable ions?d) Draw sketches to show how this compound forms by transfer of electrons.
- e) Indicate the ionic charges on the ions.
- f) What is the overall charge on the compound? g) What is the chemical formula of the compound?
- 6. Repeat question 2 for the compound formed by aluminum and fluorine.
- 7. a) How do metals form ionic compounds with nonmetals? b) Describe the process with an example.

Chemical Compounds

We will learn about two types of compounds:

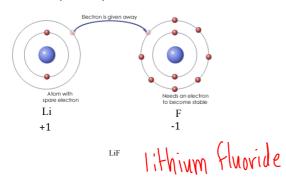
Ionic – Electrons are transferred between metals and nonmetals

Molecular – Electrons are shared between nonmetals.

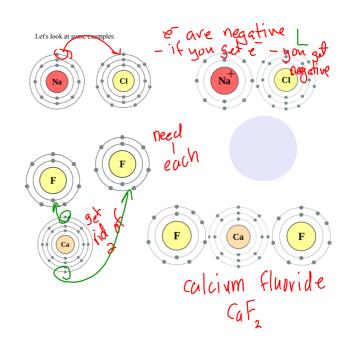
(color)

Let's try some examples.

Compound	Molecular or ionic					
FeO ₂	ionic					
KF	ionic					
CO_2	molecular					
NaCl	ionic					
H ₂ O	molecular					


A chemical formula is a combination of symbols that represent a particular compound.

- what elements are in the compound - the number of each atom present


/				
Compound	#	Element	#	Element
FeQ2	1	iron	2	oxygen
KF	1	potassium	1	fluorine
CO ₂	1	carbon	2	oxygen
NaCl	1	sodium	1	chloride
F	2	hydrogen	1	oxygen
	\mathcal{I}			

How do ionic compounds form?

- formed by a metal ion and a nonmetal ion
 the metal ion loses electrons to form a positive cation
- the nonmetal gains electrons to become a negative anion\
- the opposite charges cause the two ions to be attracted to each other
- this attraction is called an ionic bond
- the result is an electrically neutral compound

Resulting ionic compound?

Writing the Formula for Ionic Compounds

- Temporarily write the ionic charge above each symbol. Crisscross the ionic charges, using them as subscripts for the opposite ions. Reduce the subscripts to the lowest numbers possible.

Let's try some examples.

What compound is formed from sodium and bromine?

What compound is formed from calcium and iodine?

What compound is formed from aluminum and sulfur?

What compound is formed from nickel and oxygen?

How do we name these compounds?

Write the name of the metal followed by the name of the nonmetal ending in "ide"

NaCl sodium chloride

CaF2 calcium fluoride

K₂O potassium oxide

Practice!

Elements	Formula	Name
potassium and oxygen	0	0
sodium and sulfur	0	0
aluminum and iodine	0	0
silver and sulfur	0	0
calcium and nitrogen	0	0

Give the name and chemical formula for each of the following:

a) lithium and fluorine

b) calcium and bromine

c) sodium and nitrogen

d) aluminum and nitrogen

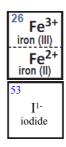
e) sodium and iodine

f) beryllium and fluorine

g) magnesium and oxygen

h) gallium and sulfur

Try this one:


Write the formula for the compound formed by iron and iodine.

Naming compounds of polyvalent metals

Some metals can form more than one kind of ion - they are called polyvalent metals.

- write the name of the metal
- add a Roman numeral in parentheses after it to indicate its ionic charge
- use the "ide" ending for the nonmetal $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$

 $\begin{array}{ll} \mbox{Ionic charge} & 3+1 - \\ \mbox{Symbol} & FeI_3 \end{array}$ $\mbox{Name} & \mbox{iron (III) iodide}$

Number	Roman numeral
1	I
2	II
3	Ш
4	IV
5	v

Try this one:

 Fe_3N_2

More practice.

- 1. Write the formula for each of the following compounds:
- a) copper(I) bromide
- b) copper(II) bromide
- c) iron(II) sulfide
- 2. Write the name for each of the following compounds:
- a) SnCl₂
- b) SnCl₄
- c) PbBr₂
- 3. Write the formula and name of the compound formed by each of the following combinations of ions.

	Fe ³⁺		O2-	
a)	1.6	anu	O	

 Fe_2O_3

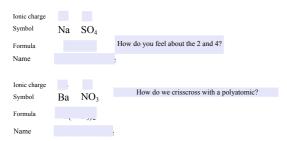
b) Ca2+ and F-

CaF₂

c) Cu+ and S2-

 Cu_2S

Polyatomic ion: atoms that tend to stay together and carry an overall ionic charge (e.g., Nitrate ion: NO_3).


acetate	CH ₃ COO	TABLE OF POLYATON	IIC IONS	oxalate	$C_2O_4^{2-}$
arsenate	AsO ₄ ³⁻	dihydrogen phosphate	H ₂ PO ₄	perchlorate	ClO ₄ -
arsenite	AsO ₃ ³ -	hydrogen carbonate	HCO ₃ -	periodate	IO_4^-
benzoate	C ₆ H ₅ COO ⁻	hydrogen oxalate	HC ₂ O ₄	permanganate	MnO_4
borate	BO ₃ ³ -	hydrogen sulfate	HSO ₄	peroxide	O_2^{2-}
bromate	BrO ₃	hydrogen sulfide	HS ⁻	phosphate	PO ₄ 3-
carbonate	CO_3^{2-}	hydrogen sulfite	HSO ₃ -	pyrophosphate	$P_2O_7^{4-}$
chlorate	ClO ₃ -	hydroxide	OH-	sulfate	SO_4^{2-}
chloride	Cl ⁻	hypochlorite	ClO-	sulfite	SO_3^{2-}
chlorite	ClO ₂ -	iodate	IO ₃ -	thiocyanate	SCN-
chromate	CrO ₄ ²⁻	monohydrogen phosphate	HPO ₄ ²⁻	thiosulfate	$S_2O_3^{2-}$
cyanate	CNO-	nitrate	NO ₃	POSITIVE POLYATO	MIC IONS
cyanide	CN-	nitrite	NO_2^-	ammonium	NH_4^+
dichromate	$\text{Cr}_2\text{O}_7^{2-}$	orthosilicate	SiO ₄ ⁴	hydronium	H_3O^+

Chemical Compounds_p4.notebook

Naming Compounds of Polyatomic Ions

Ions that contain more than one atom are called polyatomic ions

- write the symbols for the metal and the polyatomic ion write the ionic charges above the symbols and crisscross them write the name of the metal first, then the polyatomic ion

Try these: a) Fe(NO₃)₃ b) Pb(SO₄)₂ ieau (i v) suiiaie c) K₂CO₃

d) potassium hydroxide

ОН

e) lead(IV) carbonate

1. Write the formulas for the following compounds:

(a) sodium phosphate

(b) calcium sulfate

(c) potassium chlorate

(d) aluminum hydroxide

(e) beryllium nitrate

(f) magnesium hydrogen carbonate

(g) nickel carbonate

2. Write the names for the following compounds:

a) K₂CO₃

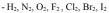
b) Na₂SO₄

c) $Al(HCO_3)_2$

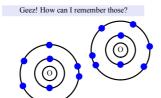
d) AgNO₃

Molecular Compounds

- most common compounds do not contain ions
- they contain neutral groups of atoms called molecules.
- a molecule (or molecular compound is made of nonmetals that are sharing electrons
- the shared electrons form a covalent bond



How many electrons does H need?


How many electrons does O need?

Diatomic Molecules are elements that exist naturally as molecules made of two atoms

H 10079																		He
3	berytture 4												5	cation 6	ntrogon 7	8	9	10
Li	Be												В	C	N	0	F	N
6.941	9.0122												10.811	12.011	14.007	15,999	18,998	20.1
sodum 11	nagnesium 12												auninum 13	slicon 14	15	16	otkisise 17	ango 18
Na	Mg												AI	Si	P	S	CI	Α
72.990	24,305												26,962	20.006	30.974	32.065	35,453	22.9
tassium 19	calcium 20		scardun 21	ttaram 22	variadum 23	chromium 24	25	26	octalt 27	reduct 28	copper 29	20: 30	gallum 31	germantan 32	prisonic 33	solonium 34	teomino 35	krypt 36
ĸ	Ca		Sc		ŵ	Ćr		Fe	Co	Νi	Ću	Ź'n	Ga			Se	Br	ĸ
9.000	43.000		4170	47.867	50.912	51.995	Mn	55845	000	58,693	63.546	65.30	69723	Ge	As	36	79.904	FX.
titure	530.10km		V\$33,638	zirconium	nichten	molybdenum	technetium	rutheritum	rhodure	palladure	silver	cadmium	indun	tin	antimony	telutura	lodine	жево
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		T	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	- 1	X
S2155	97.62 borken		88,905 lutetium	91,224 halnium	52 Sec tantature	95.94 tangston	1960 mulawh	105.07 corntam	102.91 Iridium	906.42 platinurs	gold	112.41 mercary	151.02 Follow	11E71 lead	121.76 bismuth	127.60 polonium	126.90	121.2 rado
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rı
132,91 onotine	137.33 500.00		174.97 lawrongum	178.49 ruthorfordium	183.55 0401011	183.84 sooborgium	186.21 Dobrium	150.23 hissitum	192.22 notherium	195.68 Unicedities	196.97	200,50 Unostign	204.38	287.2 urenquadam	208.98	D09	5293	1222
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
12231	558	0.0	12625	260	12621	299	264	1203	209	[271]	[272]	977		[289]				

Lanthanide series	57	58	59	60	61	62	63	64	65	66	67	68	69	70	ı.
Lanthamue series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	ı
	138,91	149.12	140.91	164.24	[149]	150.36	151.96	167.26	158.93	162.50	164.93	167,26	168.93	173.04	ı
* Actinide series	actinium 89	D09,E1	protactinium	92	neptunium 93	plutonium 94	americium	cuture	befolium 97	galfornium 98	einsteinium	100	nendelevium 101	nobelium 102	ı
- Actimide series		TI	D-				Α	C			F-				ı
	AC	III	Pa	U	ИÞ	Pu	Am	CIII	BK	CI	ES	rm	IVIC	INO	ı
	[227]	232.04	231.04	230.03	[237]	5346	[243]	[247]	[247]	[251]	[252]	[257]	[258]	D198	r

The **combining capacity** (or **valency**) is the number of covalent bonds that a nonmetal needs to form a stable molecule.

Combining capacity?

Combining capacity?

How can you know the combining capacity of an element? - it's the number of groups away from a noble gas.

Element	Combining capacity
C	0
F	0
Cl	0
S	0
О	0

e.g., What compound is formed from carbon and hydrogen?

Step 1: Write the left-most element first then the right

C	Н

Step 2: Write the combining capacities above the element symbols

Step 3: Crisscross the combining capacities to get subscripts

$$C_1H_4$$

Step 4: Reduce the subscripts if possible

 C_1H_4

Step 5: Remove any "1" subscripts - they're not needed

 CH_4

Prefixes indicate the number of atoms present.

If there is only one atom of the first element listed, the prefix MONO is not needed.

Number	Prefix
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	0

1. How can you tell the difference between ionic compounds and molecular compounds?

- a) What kinds of atoms form molecular compounds?b) How do the atoms in molecular compounds form stable electron configurations?c) What type of bond holds atoms together in molecules?

Name the following compounds: a) CBr ₄		

Write chemical formulas for and name the molecular compoundsforms by the following pairs of elements:

- a) silion & oxygen c) phosphorus & chlorine e) oxygen & fluorine
- b) nitrogen & hydrogen d) sulfur & bromine f) carbon & chlorine

Ionic Compounds - Naming

- Acids form when hydrogen atoms combine with certain ions
 - The hydrogen ion has an ionic charge of 1+ (H+).
 - Acids have the subscript aq (aqueous) after their formula.
- To name acids, follow these simple guidelines:

H +ate =ic acid	H ₂ SO ₄	= sulfuric acid
H + ite = ous acid	H_2SO_3	= sulfurous acid
H + element = hydroic acid	HCl	= hydrochloric acid

An **oxyacid** is simply and acid formed when H+ combines with polyatomic ions that contain oxygen.