Learning Genetics Can Be Fun - Solutions

1. a) tG
(b) TG, tG
(c) TG, Tg, tG, tg
(d) TG, Tg
2. a) genotype
(b) gamete
(c) genotype
(d) gamete
3. Two black dogs could be homozygous black (BB) or heterozygous black (Bb). Yellow must be homozygous, therefore cannot be the same genotype as black.
4. $\mathrm{PCcx} \mathrm{Cc} \quad$ Both parents are normal but carry the allele for CF.
$\mathrm{F}_{1} \mathrm{CC}, \mathrm{Cc}, \mathrm{Cc}, \mathrm{cc} \quad$ One in four children will inherit it.
5. a) P Rrxrr
b) R, r and r, r
c) $\mathrm{F}_{1} \mathrm{Rr}, \mathrm{Rr}, \mathrm{rr}, \mathrm{rr} \quad 1$ round: 1 wrinkled
d) $\mathrm{F}_{2} \mathrm{RR}, \mathrm{Rr}, \mathrm{Rr}, \mathrm{rr}$

3 round:1 wrinkled
6. $\quad \mathrm{P} \quad \mathrm{Llx} 11$
$\mathrm{F}_{1} \mathrm{Ll}, \mathrm{Ll}, 11,11 \quad 1$ long:1 short
7. $\mathrm{P} \mathrm{T}_{-} \mathrm{xtt}$

- almost 1:1 therefore unknown parent must be heterozygous.
$\mathrm{F}_{1} 327$ tall: 321 shortNote: homozygous (TT) would give ALL tall plants in F_{1}.

8. The presence of all smooth in the offspring means smooth is dominant.

P SS x ss
$\mathrm{F}_{1} \mathrm{Ss}$
F_{2} 3:1
9. a) P Ss x Ss
$\mathrm{F}_{1} \mathrm{SS}, \mathrm{Ss}, \mathrm{Ss}$, ss
b) P S_x

The female must be heterozygous as she produced non-spotted pups. The unknown male must be homozygous recessive (ss). If he were homozygous dominant, all pups would be spotted. If he were heterozygous, you would expect a $3: 1$ ratio in pups.
10.

(i) | | P^{2} | $\mathrm{~T}_{-} \mathrm{xtt}$ |
| :--- | :--- | :--- |
| F_{1} | tt | |

The male must be heterozygous (Tt) to be able to produce
(ii) $\mathrm{P}^{\mathrm{T}} \mathrm{T}_{-} \mathrm{xtt}$ $\mathrm{F}_{1} \mathrm{Tt}$
(iii) $\mathrm{P}^{\mathrm{T}} \mathrm{T}_{-} \times \mathrm{Tt}$
$\mathrm{F}_{1} \mathrm{tt}$
11. Normal woman Pp (must be heterozygous because father was albino)

Husband pp
Husband's parents both Pp
Children Pp, Pp, pp
12. Perform a test cross. $W_{-} \mathrm{x}$ ww
13. a) PggFt \times G_Ff
F_{1} Ggff
b) We would need a mermaid to be born with blue hair. This would tell us that the mother is heterozygous.
14. B - black; b-white; S - short; s - long
a) P BBSs x bbss
F_{1} BbSs, Bbss 1 black, short: 1 black, long
b) P BbSs x bbss
F_{1} BbSs, Bbss, bbSs, bbss 1 black, short:1 black, long: 1 white, short:1 white, long
c) P BBss x BbSs
F_{1} BBSs, BBss, BbSs, Bbss 1 black, short: 1 black, long
d) i) (a) $1 / 2$
(b) $1 / 4$
(c) $1 / 2$
ii) (a) $1 / 2$
(b) $1 / 4$
(c) $1 / 2$
iii) (a) 0
(b) $1 / 4$
(c) 0
15. B-black; b-white; S-solid; s- spotted
male female
a) $\quad \mathrm{P} \quad \mathrm{B}_{-} \mathrm{S}_{-} \mathrm{x} \quad \mathrm{bbS}$
$\mathrm{F}_{1} \quad 2 \mathrm{BbS}_{-}, 2 \mathrm{bbS}{ }_{-}$
Some white pups so the male must be Bb . The absence of any non-spotted pups suggests that female A is SS but we can't say for sure.
b) $\quad \mathrm{P} \quad$ BbSs $\mathrm{x} \quad$ B_S_
$\mathrm{F}_{1} \quad$ bbss the presence of white, non-spotted pups means that female B must be BbSs
c) $\quad \mathrm{BbSs} \mathrm{x} \quad \mathrm{bbss}$
$\mathrm{F}_{1} \quad$ bbŚs, bbss, BbSŚs, Bbss
The genotype of female C can be determined from her phenotype.
16. $P \mathrm{Pp} \times \mathrm{Pp}$
$\mathrm{F}_{1} \mathrm{PP}, \mathrm{Pp}, \mathrm{Pp}, \mathrm{pp} \quad$ chance of PKU is $1 / 4$
17. $\mathrm{P} \mathrm{Bb} \times \mathrm{Bb}$
$\mathrm{F}_{1} \mathrm{BB}, \mathrm{Bb}, \mathrm{Bb}, \mathrm{bb}$
a) $1 / 4$
(b) $1 / 4$
(c) $1 / 2$
d) 1 homozygous brown: 2 heterozygous brown: 1 homozygous blonde. Phenotype: 3 brown: 1 blonde
e) not possible because blonde (b) is recessive
f) PCc xcc
$\mathrm{F}_{1} \mathrm{Cc}$, cc $1 / 2$ of offspring will have curly hair.
g) $1 / 2$
h) No. Straight is recessive.
18. Parents are $\mathrm{AaBbCC} \times \mathrm{AabbCc}$
$\mathrm{P}(\mathrm{AAbbCc})=\mathrm{P}(\mathrm{AA}) \times \mathrm{P}(\mathrm{bb}) \times \mathrm{P}(\mathrm{Cc})$
$\mathrm{P}(\mathrm{AA})=1 / 4$
$\mathrm{P}(\mathrm{bb})=1 / 2$
$\mathrm{P}(\mathrm{Cc})=1 / 2$
$\mathrm{P}(\mathrm{AAbbCc})=1 / 4 \times 1 / 2 \times 1 / 2=1 / 16$
19. S^{R} - round; $S^{L}-$ long
$P S^{R} S^{R} \times S^{L} S^{L}$
$F_{1} S^{R} S^{\mathrm{L}}, S^{\mathrm{R}} S^{\mathrm{L}}, S^{\mathrm{R}} S^{\mathrm{L}}, S^{\mathrm{R}} S^{\mathrm{L}}$
$P S^{R} S^{L} \times S^{\mathrm{R}} S^{\mathrm{L}}$
$F_{2} S^{R} S^{R}, S^{R} S^{L}, S^{R} S^{L}, S^{L} S^{L} \quad$ (incomplete dominance)
20. P Aa x Aa
$F_{1} A A, A a, A a$, aa $-1 / 4$ unaffected, $1 / 2$ affected with sickle cell trait, $1 / 4$ affected with sickle cell disease
21. $C^{R} C^{R}$ - chestnut; $C^{M} C^{M}$ - cremello; $C^{M} C^{R}$ - palomino
$P_{C} C^{\mathrm{M}} \mathrm{C}^{\mathrm{R}} \mathrm{C}^{\mathrm{M}} \mathrm{C}^{\mathrm{M}}$
$\mathrm{F}_{1} \mathrm{C}^{\mathrm{M}} \mathrm{C}^{\mathrm{M}}, \mathrm{C}^{\mathrm{R}} \mathrm{C}^{\mathrm{M}} \quad 1$ cremello:1 palomino
22. $\quad \mathrm{PF}^{\mathrm{R}} \mathrm{F}^{\mathrm{W}} \times \mathrm{F}^{\mathrm{R}} \mathrm{F}^{\mathrm{W}}$
$\mathrm{F}_{1} \mathrm{~F}^{\mathrm{R}} \mathrm{F}^{\mathrm{R}}, \mathrm{F}^{\mathrm{R}} \mathrm{F}^{\mathrm{W}}, \mathrm{F}^{\mathrm{R}} \mathrm{F}^{\mathrm{W}}, \mathrm{F}^{\mathrm{W}} \mathrm{F}^{\mathrm{W}}$
a) $1 / 2$ pink
b) $1 / 4 \mathrm{red}$
c) $1 / 4$ white
d) $1: 2: 1$
23. woman $\mathrm{I}_{-}^{\mathrm{B}} \mathrm{x}_{\mathrm{man}} \mathrm{I}_{-}^{\mathrm{A}}$
F_{1} ii is possible if mother and father were both heterozygous. The facts are inconclusive.
24. $\quad \mathrm{P}$ ii x $\mathrm{I}^{\mathrm{A}} \mathrm{I}^{\mathrm{B}}$
$\mathrm{F}_{1} \mathrm{I}^{\mathrm{A}} \mathrm{i}, \mathrm{I}^{\mathrm{B}} \mathrm{i}$
$A B$ female could produce $A B$ offspring if the male were type A, B, or $A B$; she could never produce type O in F_{1} because she always donates either A or B .
25. Parents 1
$\mathrm{I}^{\mathrm{A}} \mathrm{XXI}^{\mathrm{B}}{ }_{-}$
F_{1} only parents capable of producing type AB (Baby 3)
Parents 2
ii x ii
F_{1} only type O (Baby 4)

Parents 3

$I^{A} I^{B} x$ ii
F_{1} these parents can produce babies of type A or B but only one baby remains (Baby 1)
Parents 4
$\mathrm{I}^{\mathrm{B}} \mathrm{x}^{\mathrm{B}}{ }_{-}$
F_{1} these parents cannot produce a type A baby (Baby 2)
26. a) $P^{h} C^{a} x^{a} C^{a}$
$\mathrm{F}_{1} \mathrm{C}^{\mathrm{h}} \mathrm{C}^{\mathrm{a}}, \mathrm{C}^{\mathrm{a}} \mathrm{C}^{\mathrm{a}} \quad 1$ himalayan:1 albino
b) $\quad \mathrm{PCC}^{\mathrm{a}} \mathrm{x} \mathrm{C}^{\mathrm{ch}} \mathrm{C}^{\mathrm{a}}$
$\mathrm{F}_{1} 2 \mathrm{C}_{-}, \mathrm{C}_{-\mathrm{ch}}, \mathrm{C}^{\mathrm{a}} \mathrm{C}^{\mathrm{a}}$
c) $\quad \mathrm{PC}^{\mathrm{ch}} \mathrm{C}^{\mathrm{ch}} \mathrm{x} \mathrm{C}^{\mathrm{ch}} \mathrm{C}^{\mathrm{a}}$
$\mathrm{F}_{1} \mathrm{C}^{\mathrm{ch}} \mathrm{C}^{\mathrm{ch}}, \mathrm{C}^{\mathrm{ch}} \mathrm{C}^{\mathrm{a}} \quad 1$ chinchilla:1 light gray
d) $\quad \mathrm{P} \mathrm{C}^{\mathrm{ch}} \mathrm{C}^{\mathrm{h}} \times \mathrm{C}^{\mathrm{a}} \mathrm{C}^{\mathrm{a}} \quad$ test cross $\mathrm{F}_{1} 5 \mathrm{C}^{\mathrm{h}} \underline{\mathrm{C}^{\mathrm{a}}}, 5 \mathrm{C}^{\mathrm{ch}} \underline{\mathrm{C}^{\mathrm{a}}}$
27. a) 4 children
b) A is Dd, B is Dd
c) M is dd, N is dd
28.

